Predicting unimolecular chemical reactions: Chemical flooding
نویسندگان
چکیده
We present a method to predict products, transition states, and reaction paths of unimolecular chemical reactions such as dissociation or rearrangement reactions of small to medium sized molecules. The method thus provides the necessary input for established procedures to compute barrier heights and reaction rates, which conventionally have to be assumed heuristically. The method is an extension of the force field based conformational flooding procedure, but here aims at an accelerated barrier crossing of chemical reactions rather than conformational motions. Accordingly, it is now coupled to density functional molecular dynamics, such that the chemical reaction under study takes place at the picoseconds time scale set by todays computer technology. Barrier crossings are accelerated by means of an additional energy term ~flooding potential! that locally destabilizes the educt conformation without affecting possible transition states or product states. The method is applied to two test systems, bicyclopropylidene and methylenecyclopropane, for which the reaction paths are predicted correctly. New details of reaction pathways are found, such as a transient concerted, but asynchronous rotation of the two methylene groups for the bicyclopropylidene→methylenespiropentane reaction. Our method can be applied to simulations in the gas phase as well as in solution and can be combined with force field simulations, e.g., in hybrid density functional/force field ~QM/MM! computations. © 2002 American Institute of Physics. @DOI: 10.1063/1.1427722#
منابع مشابه
Photochemistry of aldehyde clusters: cross-molecular versus unimolecular reaction dynamics.
The unimolecular photochemistry of aldehydes has been extensively studied, both experimentally and computationally. However, less is known about the role of cross-molecular photochemical processes in the condensed-phase photolysis of aldehydes. The triplet-state photochemistry of pentanal in its pentameric (n = 5) cluster was investigated as a model for photochemical reactions of aliphatic alde...
متن کاملChemical Dynamics Studies of Unimolecular Reactions in Energetic Materials
3 RESEARCH 4 Training Scientists7
متن کاملExperimental Investigation of Flooding and Drop Size in a Kuhni Extraction Column
In this research, Sauter-mean drop diameters and the flooding behavior have been investigated experimentally in a pilot scale Kühni extraction column. The experiments were carried out in the absence of mass transfer for two different standard chemical systems. In the experiments operating parameters including agitation speed, flow rate of both liquid phases and interfacial tension have been stu...
متن کاملDNA as a Universal Substrate for Chemical Kinetics (Extended Abstract)
We show that a DNA-based chemical system can be constructed such that it closely approximates the dynamic behavior of an arbitrary system of coupled chemical reactions. Using strand displacement reactions as a primitive we explicitly construct reaction cascades with effectively unimolecular and bimolecular kinetics. Our construction allows for individual reactions to be coupled in arbitrary way...
متن کاملUnimolecular reaction chemistry of a charge-tagged beta-hydroxyperoxyl radical.
β-Hydroxyperoxyl radicals are formed during atmospheric oxidation of unsaturated volatile organic compounds such as isoprene. They are intermediates in the combustion of alcohols. In these environments the unimolecular isomerization and decomposition of β-hydroxyperoxyl radicals may be of importance, either through chemical or thermal activation. We have used ion-trap mass spectrometry to gener...
متن کامل